Category Archives: Scientist of the Month

SOTM September 2013: Victoria Prince

By: Stephanie Levi, PhD

Victoria PrinceVictoria Prince, Ph.D. is no stranger to a bustling research career.  As a developmental biologist in the University of Chicago’s Department of Organismal Biology and Anatomy, Dr. Prince leads a team of researchers in exciting research that focuses on the developmental biology of the pancreas and brain stem.  In recent years, leadership has taken a new shape for her in the form of university administration. Dr. Prince assumed the role of Associate Dean and Director of the Biological Sciences Division’s (BSD) Office of Graduate Affairs in 2010.  In this role, Dr. Prince has expanded her reach as a mentor to graduate students and early-career researchers, catalyzing a new kind of career development for the next generation of scientists.

Dr. Prince began her research career at North London’s National Institute for Medical Research, where she studied genes that establish specific parts of the body along the body’s axis.  A short course in embryology with two soon-to-be Nobel laureates introduced her to a new model system that had not yet gained popularity but has proven extremely useful in a variety of fields—zebrafish.  Using this model system, Dr. Prince and her lab have developed techniques and pioneered discoveries that have illuminated the development of the pancreas and brain stem, garnering global interest.  Their work seeks to illuminate the establishment of neural circuitry, and understand how the pancreas is built during embryo development to ultimately generate transplantable pancreatic islets from stem cells to cure diabetes.

Such ambitious goals in research have paralleled Dr. Prince’s role as the Associate Dean and Director of the BSD’s Office of graduate affairs.  Dr. Prince has worked with the University’s Career Advancement office to introduce an innovative set of programs to support students who are considering a wide variety of post-graduate careers, including alumni visits and workshops for students and post-docs that go outside traditional careers and explore a more diverse selection of career options.  “Sometimes scientists are resistant to taking on what they see as service roles, but service and leadership turn out to be two sides of the same coin,” Dr. Prince says.   Exposing students and post-doctoral scholars to diverse career options helps them explore interests that leverage their experience as researchers, while cultivating ways to be of service through their myriad experiences.  Dr. Prince is an excellent example for other scientists of all levels, not only for what it has enabled her to do for her community, but also for how it has been of service to her. “My administrative role has benefitted me by giving me a much greater understanding of the intricacies of how a university runs, and allowing me to meet a fantastic new cadre of colleagues from outside of the biological sciences.”

Dr. Prince emphasizes that administrative roles are a great choice for female scientists, and female scientists are a great choice for these roles, particularly timely in light of online buzz about the dearth of women in administration roles in research environments.  “Taking on such roles allows women to have a broader, or at least a different, impact than can be achieved solely through developing a strong research program.  Another excellent reason for women to take on such leadership roles is to provide strong role models for the next generation.”  University administrators need to be mindful of issues that may be unique to women in science, she cautions. “Searches need to be much more proactive if women candidates are to be convinced to apply for and (even more challenging) accept upper level leadership jobs.  Strategies that work well enough to attract male candidates will not necessarily work for female candidates, so search committees, and particularly the senior leadership behind them, need to do their homework and be willing to go the extra mile if they are serious about placing excellent women scientists into leadership positions.”

So, what is the secret to her success?  Dr. Prince dispenses excellent advice: Just say no. “[Being] empowered to do so when appropriate can save new assistant professors from too much busy work and allow them to focus on the most critical task of establishing their research program.”  She has advice for students as well: “…Focus on the questions they are passionate about and that will get them up in the morning, rather than worrying too much about whether a particular area of research will be trendy, and where the funding will lie ten years down the road.  I suppose this is a form of living in the moment, but I really think research is too hard to do if you aren’t excited about the daily experiments, and none of us have a crystal ball.”   A final bit of wisdom is good for all of us: “’Everything in moderation, including moderation.’  Sometimes you really should just go for it.”

July SOTM: Gayle Woloschak

Woloschak color
Imagine traveling to Siberia. In the winter. For science.
Been there, done that, for Gayle Woloschak. She traveled to Ozersk, a Russian village whose borders require security clearance to breach, to advise scientists on how to handle samples.
These were not ordinary samples. They dated back to the Cold War era and came from animals that had been systematically irradiated by Soviet scientists to understand the effects of radiation on the body.
Gayle was brought to Ozersk because she is a radiation biology expert and creator of the Northwestern University Raditation Archive (NURA), a collection of animal tissue samples from U.S. government-sponsored radiation experiments. Her mission in establishing the archive was to advance the understanding of radiobiology in a cost-effective manner and with reduced animal sacrifice.
In addition to advising colleagues around the globe, Gayle advises graduate students and maintains a radiation biology and bionanotechnology research lab as a Professor of Radiation Oncology at Northwestern. She also teaches radiation biology to medical residents, co-directs the residency training program and the Cancer and Physical Sciences Program at the Robert H. Lurie Comprehensive Cancer Center, and is the Vice President of the Radiation Research Society.
Gayle received her B.S. in Biology from Youngstown State and credits her undergraduate professor, Dr. Lauren Schroeder, for her decision to go into research. “He was an ecologist and I had the chance to work in his lab for about 2 years running experiments. In the end, I loved it, and he encouraged me to continue,” says Gayle. She went on to earn her Ph.D. in Immunology from the Medical College of Ohio and completed post-doctoral training in Immunology/Molecular Biology at Mayo Clinic. She worked in the Bioscience Division at Argonne National Laboratory for 15 years before her unusual transition to a position at Northwestern, “Northwestern needed someone to teach radiation biology to the residents, so I did this while still at Argonne. Eventually it evolved into a full-time faculty position,” says Gayle.
Gayle remains involved in research at Argonne as the Associate Director for Microbeam Science. She helped developed the Bionanoprobe (BNP), the only X-ray microscope in the world that can image cryogenically preserved biological samples with 30 nm resolution. The BNP is used primarily by the Woloschak Laboratory to study the localization of nanoparticle therapeutics in cancer cells and tissue. The tomographic capabilities of the BNP also allow for 3D reconstruction of the cells. “The idea, when we came up with it over 12 years ago, was to design a way look at samples in their native states,” says Gayle.
Outside of the lab, Gayle has a Doctor of Ministry degree and is active in the science-religion dialogue in Chicago and nationwide. She finds the dialogue “stimulating but also necessary to keep religious groups from having fears about science issues like evolution.”
Any way you look at it, Gayle is a teacher. When asked what she would be doing if she were not in her current position, Gayle says, “I’d be trying to do the same thing at another university. I love science and I love sharing it with others.”

SOTM June 2013: Gail Karet

By Agnella Matic

What is the last medicine that you took?  Do you remember its name?  Chances are that you’re thinking of the medicine’s brand name, such as Tylenol® or Zithromax®.  But these drugs have a generic name as well: acetaminophen and azithromycin, respectively.  The generic drug name is the result of a formal negotiation process between the pharmaceutical company that is manufacturing the new drug and the United States Adopted Names (USAN) Council.  Dr. Gail Karet, senior scientist at the American Medical Association (AMA), plays a crucial role in the naming process by acting as chief negotiator between pharmaceutical companies and the USAN Council.

As a new drug is developed, the pharmaceutical company will apply for an adopted name (more commonly known as a generic name).  Dr. Karet (pronounced ca-RET) relies on her background in chemistry to understand the chemical structure and the supposed action of the drugs that are submitted for naming.  The pharmaceutical company will submit several suggested names, working from a naming scheme that Dr. Karet and the USAN Council publish.  The suggested drug names should all carry the same stem, which is based on the drug’s mode of action.  For instance, azithromycin carries the “-mycin” stem, which indicates that it is an antibiotic against Streptomyces bacterial strains.  The other part of the drug name, the prefix, carries no meaning, surprisingly.  The prefix (“azi-“ in this example) is merely there to differentiate it from other drugs in the same class.  One of Dr. Karet’s crucial responsibilities is to interpret the chemical and biological information on the application and determine if the company’s suggested names conform to the naming scheme.

Though the brand name of a drug is usually more recognizable to consumers, the adopted name is arguably the more important name for patient safety.  “[The adopted name] can’t be too close to another [generic or brand] name that might get confused, either when written out, when spoken, or in electronic order entry,” Dr. Karet notes.  There are other guidelines that relate to international use of the adopted name, such as letters or pronunciations that don’t exist in certain languages.

The naming process usually takes 1-2 rounds of negotiations between the USAN Council and the pharmaceutical company.  Common reasons that the USAN Council asks a pharmaceutical company for alternative naming suggestions are a prefix that the Council deems too promotional, a newly created stem that is not supported by the accompanying data, or a name that suggests a part of the body that the drug acts on.  After each round of deliberation by the USAN Council, Dr. Karet reports the results to the pharmaceutical company and facilitates any revisions that have been requested.

Once the USAN Council and the pharmaceutical company reach a consensus, the suggested name is brought to the World Health Organization (WHO) for approval by their international non-proprietary names group.  When the WHO, the USAN Council, and the company agree on the same name, the drug receives its United States Adopted Name and a statement of adoption is issued, which includes information on the chemical structure, the molecular weight, and suggested pronunciation.  Only after a drug receives an adopted name may the company market the drug to physicians and consumers.

In addition to over-the-counter and prescription drugs, Dr. Karet works on adopted name applications for new contact lens plastics, monoclonal antibodies, and veterinary drugs, to name a few.   She estimates that the USAN Council adopts names for over 100 new substances each year, the majority of which are active pharmaceuticals.  The USAN Council does not name items such as new formulations of existing substances, preventative vaccines (i.e. annual flu vaccine), or substances that have not yet been tested in clinical trials.

Karet, Gail-07To arrive at her current position, Dr. Gail Karet has taken a path that even she could not have anticipated.  After finishing her PhD dissertation at Northwestern University and a post-doctoral fellowship at Indiana University, Dr. Karet took on an editorial journalist role for several pharmaceutical industry magazines, winning regional and national journalism awards along the way.  When the publisher’s headquarters moved to New Jersey, she transitioned to a position at the AMA and worked on educational products that are offered to physicians for continuing medical education.  Dr. Karet credits her strong writing and editing skills, developed while an editorial journalist, for helping her succeed in the medical education position.  Several years after joining the AMA, a scientist position opened up for the USAN program and, in her words, “I couldn’t not apply because it was a really good fit for my background.”

Dr. Karet appreciates the flexible work environment at the AMA and her husband’s involvement with raising their two children, both of which allow her to maintain a full-time position, spend time with her family, and go to her favorite morning yoga classes.  She concedes that her life needs to be set up just the right way for everything to work.  If something happens, a kid gets sick, then the balance of work, life, and family gets disrupted.  Dr. Karet has been just as flexible with her own choices, noting that she and her husband, who is a researcher at Argonne National Laboratory, solved the “two-body problem” when she looked outside of academia for work so that she could remain in the Chicago area.  Dr. Karet emphatically states, “I’m not sorry I left research.  I agonized over it… but in retrospect I’m glad I did it.”

SOTM: Katharine Radwanski

Written by C. Zoe Hoeppner, PhD

Principal Engineer at Fresenius Kabi (via the recent acquisition of Fenwal Inc), Katherine Radwanski is rising young female star in the apheresis and blood device industry. Despite having only received her Master’s in Biotechnology from Northwestern University in 2008, Katherine has quickly made a name for herself, winning several awards from professional societies, authoring patents, and most recently serving as the technical lead for an exploratory IND (investigational new drug) study at Fenwal (now Fresenius). Traditionally, a company submits IND applications only after a candidate drug has been put through rigorous testing and is in final product form. The study Katherine lead of a new platelet additive solution was one of the first of its kind in the transfusion technology industry, and a major accomplishment for her company.

Fenwal-2011 11 16 4870 (3)Though she is a technical whiz when it comes to apheresis, Katherine is not taking anything away but rather giving back through mentoring young women scientists and engineers during their co-op internships at Fresenius Kabi, or through career mentorship. Katherine sees the biggest challenge women facing in her industry are a lack of female mentors in senior technical roles. While she was fortunate, her mother was a great mentor and source of support for her in her education and career; working as a manufacturing engineer for over 30 years where few women can be found; this is often not the case. As Katherine sees it, often time’s female scientists and engineers with excellent communication and management skills are diverted to the project management roles, which leave a gap for mentors to the more junior female scientists. For her part, Katherine is trying to overcome this issue by encouraging women to pursue their technical interests through continuous learning and educating them on how they can advance their careers in a technical path as she has.

April SOTM: Arabela Grigorescu

Arabela GrigorescuBy Marina Damiano

When Arabela Grigorescu was a post-doctoral fellow researching DNA repair proteins at the University of Chicago, she found herself a crossroads in her career.  Though she was most comfortable in what she considered to be the creative and stimulating environment of academe, Arabela knew teaching courses as a tenure track faculty was not the path she wanted to pursue.

Not having a clear idea of what to do next, Arabela reflected on her graduate school teaching experiences.  While she earned her Ph.D. in Molecular Biophysics and Structural Biology from the University of Pittsburgh, Arabela loved teaching labs.  She helped design and taught a laboratory course in Molecular Biophysics to familiarize undergraduate students with biophysical techniques to characterize several aspects of protein structure and function.  The course was instrumental in teaching undergraduates how to “do” science like it is actually done in the research environment.   For Arabela it was a great learning opportunity and a “very rewarding experience,” especially because some of her students were so inspired that they went on to pursue graduate studies in the same area of research.

Today Arabela continues to support researchers as the Managing Director of the Keck Biophysics Facility at Northwestern University.  The Keck Facility is a center for molecular biophysical research which provides Northwestern groups with advanced equipment, specialized training, and assistance. The Facility has a set of 22 advanced instruments that allow for integrated analyses of macromolecular structure, interactions, and function.  As Director, Arabela manages the daily operations of the Keck laboratory and provides counseling, training and assistance to researchers who need to employ biophysical techniques.  She must also constantly evaluate novel technologies and both seek out and supply the Facility with technologies to meet the needs of Northwestern research groups.

Originally from Romania, Arabela studied physics at the University of Bucharest.  She turned from physics to biology when Peter Lipke, a biology professor at CUNY, accepted her as non-degree student into his advanced structural biology course.  Though she could barely speak English, the course left her spellbound.  “After the first couple of lectures I had no doubt this is the area I wanted to specialize in,” Arabela says.  She developed her investigatory skills as a graduate student with Linda Jen Jacobson at the University of Pittsburgh and then as a post-doctoral fellow with Phoebe Rice at the University of Chicago – two women who, in Arabela’s words, are “renowned scientists, excellent mentors, and role models.”

At Northwestern, Arabela is a mentor in her own right.  Along with her staff, Arabela guides the efforts of over 500 users from various areas of research, all of whom require differing levels of assistance – some are self-sufficient and some need help at every step.  However, these challenges do not faze Arabela, “I think it is fantastic to work in this field, in a top-tier research university, in this day and age.  I get to see innovative projects, discuss breakthrough ideas, and meet brilliant people every day.  It is an honor and a privilege to contribute in a very small way to the extraordinary research currently going on at Northwestern.”

Grateful for the work-life balance she has in her current position; Arabela makes it a priority to be home for family dinner and to spend time with her children.  In her spare time, she enjoys gardening and says that readers would be surprised to know that she is pursuing a degree in Garden Design.  Thinking back on her career path thus far, Arabela is “very content” in her current position and cannot imagine herself somewhere else.  She advises scientists who enjoy academia, but do not want to be principal investigators to sample different aspects of the academic experience during their graduate and postdoctoral years.  “It is possible to find rewarding positions that combine managerial and administrative skills with knowledge of the academic system and expertise in a particular area of science. “

March SOTM: Maryellen Giger

By Agnella Izzo Matic, PhD

The breast tumor lights up in pink on the computer screen.  Algorithms automatically detect the tumor and predict that this tumor is malignant.

GigerPhotoForEmoryThis scene may soon play out in medical centers around the nation thanks to Dr. Maryellen Giger’s innovative research in the fight against breast cancer.  Dr. Giger (rhymes with “tiger”) is Professor and Vice Chair for basic science research in the Department of Radiology, Chair of the Committee on Medical Physics, and Director of the Imaging Research Institute at the University of Chicago.

Dr. Giger’s research focuses on computer-aided diagnosis of breast cancer from multiple breast imaging modalities, including mammography, ultrasound, and MRI (magnetic resonance imaging). The information from Dr. Giger’s computer algorithms can improve breast cancer diagnosis, prognosis, and patient care.  For example, in current medical practice, MRI has several uses related to breast cancer.  MRI can be used to screen women with a high risk of developing breast cancer or those with dense breasts.  MRI is also used as a secondary exam following a suspicious x-ray mammogram, as well as a monitoring method during cancer treatment.  Though it is not the gold standard for all breast cancer screening, breast MRI is gaining prominence in medical practice and Dr. Giger’s research is one reason why.

The quantitative image analysis techniques developed by Dr. Giger and her colleagues automatically segment a breast lesion; extract lesion features such as volume, surface area, and contrast kinetics; and estimate the invasiveness of a lesion and the probability of malignancy.  Potentially all of this information can aid a radiologist to diagnose cancer, characterize aggressiveness of the tumor, and predict response to therapy.

Several former University of Chicago students formed the company Quantitative Insights to bring Giger’s research to the clinic (Giger sits on the board as a scientific advisor).  The company added an intuitive clinical interface to the algorithms and analysis methods developed in Dr. Giger’s lab.  Initial feedback for the clinical interface has been overwhelmingly positive and the interface was recently exhibited at the 2012 annual meeting of the Radiological Society of North America (RSNA).  Once Quantitative Insights obtains FDA approval for the clinical workstation, radiologists will be able to analyze patients’ breast MRIs using the methods developed at the University of Chicago.  Radiologists who have previewed the workstation estimate that they can reduce the time to interpret a breast MRI scan from 30 minutes (using current technology) to 10 minutes. Additionally, the workstation will deliver more in-depth quantitative information to the radiologist than is currently available.

Many organizations have bestowed honors on Dr. Giger.  She is a fellow of the American Institute of Medical and Biological Engineers (AIMBE), fellow of the American Association of Physicists in Medicine (AAPM), and member of the National Academy of Engineering, which is arguably the highest professional honor that can be bestowed on an engineer.

And it’s no wonder why.  Dr. Giger’s research output is astounding.  She has advised over 100 trainees.  She has 37 patents issued.  She is the author of 177 peer-reviewed manuscripts, and counting. Though these remarkable descriptors all apply to Dr. Giger, they don’t convey the full picture of her intellect, her wisdom, or her warm personality.

Dr. Maryellen Giger appreciates the support she received from several mentors throughout her career. Dr. Rose Carney, Giger’s math professor at Illinois Benedictine College (now Benedictine University), offered Dr. Giger several summer job opportunities during her undergraduate studies.  One of those opportunities was a research position working on temperature controls for neutron therapy and building electronics for beam diagnostics at Fermi National Accelerator Laboratory.  Dr. Franca Kuchnir, Professor Emerita of Radiation and Cellular Oncology, and the late Dr. Charles Metz, Professor of Radiology, were influential colleagues at the University of Chicago, especially during Giger’s early faculty period.

As a mentor herself, Dr. Giger is pleased to return the favor and give advice gained from her own experience. She is particularly attentive to the needs of junior faculty. Giger is a big proponent of tearing down the hierarchy that is present in academia, noting that in her lab “everyone is equal around the scientific table.” Her hope is that former students and junior colleagues act as a supportive mentor for the next generation of scientists when the time comes.

Outside the laboratory, Dr. Giger spends her down time reading biographies of great scientists and she recently enjoyed “The Emperor of All Maladies” by Siddhartha Mukherjee. Looking forward, the biggest challenge for Giger and her lab is one that almost all biomedical researchers in the US are facing: obtaining funding.  Even after a career spanning 4 decades, she still has many ideas for new projects that she would like to begin.

February SOTM: Michelle Paulsen

By Marina Damiano

Michelle Paulsen photoAs a scientist, what do you say when a colleague asks you about your research?  Is it different than how you would explain your research to a non-scientist?  Perhaps it is easy to deliver a highly technical presentation, but when you have to remove the jargon and package the essence of your research into digestible information for the public, you struggle.  Fear not, for you are not alone!  Scientists spend years learning theory and perfecting experimental techniques, but we are rarely trained or even given a lesson on the art of communication.  However, in order to drive new discoveries, scientists must be able to clearly communicate their research to more than just scientists.  There are teachers and students who are eager to learn, organizations and foundations who want to fund, and even ordinary people who want to understand why they have a disease or how a machine works.  At the graduate level and beyond, these important outreach and communication skills are often overshadowed by research demands, but Michelle Paulsen is changing the status quo for science communication at Northwestern University.

Michelle is the director of Reach for the Stars, a National Science Foundation sponsored program that provides fellowships for Northwestern PhD students to become “resident researchers” in K-12 classrooms.  As director, Michelle recruits graduate students, all of whom are in STEM fields and use computational modeling in their research, and teachers for the program.  With her extensive background in science, teaching, and leadership training, Michelle also advises the PhD candidates on how to develop educational materials related to their research and teaches the participating educators how to work with and train new science communicators.  One former fellow explains how the skills he learned in Reach for the Stars benefited other aspects of his graduate career, “In preparing a talk for my department, I took an approach different from what I would have done in the past.  The talk felt more like a narrative, reaching a goal (the paper I was assigned), rather than a collection of theorems slapped on the whiteboard (which is probably what I would have done pre-Reach for the Stars).”

As a self-proclaimed science and education geek, Michelle is passionate about science education for all.  Like most of us in the field, Michelle’s lifelong love of science began with outstanding teachers in elementary school and high school.  She went on to earn her Bachelor of Science in Chemistry from the University of Illinois – Urbana-Champaign (U of I) and Master of Science in Environmental Engineering from the Illinois Institute of Technology (IIT).  Her graduate research took her to the Shedd Aquarium, where she developed a computational model to detect metal ions from eroding pipes in the water distribution systems.  Although Michelle enjoyed her research, she felt a call to leave the lab and focus on teaching science to others.  Michelle credits two outstanding teachers – Dr. Clifford Singer at U of I and Dr. Paul Anderson at IIT – with the impetus to move in this direction.  “Not only were they well respected researchers, but they had a talent for teaching as well.  I found that to be a unique combination and they have been sources of inspiration to me.”  With this momentum, Michelle earned a Master of Arts in School Leadership from National Louis University.

In her current position at Northwestern, Michelle observes that the public is starting to grasp more firmly the importance of science and science education.  New national guidelines, the Next Generation Science Standards, require an overhaul of existing benchmarks for science education.  According to Michelle, there is a push for curriculum that encourages science students to explore their own research questions and to design experiments rather than following pre-written procedures.   Because of these societal and curriculum changes, practicing scientists are now more frequently asked to participate in both formal and informal science education and communication.

To meet the demands of these new expectations for scientists and researchers, Michelle helped to establish the Ready, Set, Go (RSG) program in summer 2012 to improve the communication skills of STEM graduate students and post-doctoral fellows at Northwestern.  Michelle based RSG on a program she attended at the Stony Brook University Center for Communicating Science; this program was designed with input from actor and long-time science fanatic, Alan Alda, who recognized that scientists sometimes need help communicating more “directly and personally.”  RSG is a 10-week communication fellowship that brings in experts in the fields of theatre, broadcast journalism, and information visualization to prepare young STEM researchers to be able to share their work more effectively with a broader audience.  The fellowship concludes with a symposium called Seven Minutes of Science that features RSG fellows giving TED style talks about their research.  Northwestern professor and Dean of the Graduate School, Dwight McBride, attended the symposium and was “impressed by the powerful presentations and the progress” of RSG fellows.  Last year was RSG’s inaugural year, but the program has been renewed by Northwestern to run in both the spring and summer 2013 terms

Michelle advises all young scientists, regardless of their desired career path, to find what they are passionate about and study it thoroughly.  When scientists who want to transition from academia to non-traditional fields, such as outreach and science communication, ask for advice, Michelle says, “Get your feet wet! Try it, see if you like it, and then continue to grow.  Volunteer in classrooms and at museums; try to become more invested in science education at your home institution and in your community.”

So the next time you are at Thanksgiving dinner and your fourth cousin asks you what you do, do not sigh and say, “It’s complicated.”  Rather, think about what you read in this article and the importance of the skillset of communicating science to non-scientists.   Then, take a deep breath and enlighten them.

January SOTM: Christine McCary

Article by Eun Ji Chung, Ph.D.

I met Christine McCary during graduate school. Although our research circles had never overlapped, we both applied to and were accepted to the Management for Scientists and Engineers summer program held by the Graduate School and Kellogg School of Business at Northwestern University. In sum, this certificate program aimed to “equip promising doctoral students with the necessary business and leadership skills,” in order to address the gap between the challenges faced when managing and leading teams associated with the commercialization of research and the extremely focused doctoral experience. Attendants of the program can be generalized as open-minded, acutely interested in the application of science, well-versed, and on a personal note, up for a challenge. Christine epitomizes these traits.

Christine McCaryChristine McCary, Ph.D., received a Bachelor of Science in Cellular/Molecular Biology from the University of Maryland. During college, she was pre-med and was determined to be a part of science through medicine. While preparing to take the MCATs, Christine had an epiphany. She knew she would love the academic and intellectual experience of medical school, but the unforgiving working hours of a physician would not grant the time she wanted to devote to her family and friends. She decided then that her value system and priorities would be the ultimate arbitrator of her career choices. After this time of introspection, Christine decided that she would need to choose a career in which her curiosity for learning, her passion to mentor and teach, and her desire for work-life balance would be satisfied.

Christine attended Northwestern for graduate school where she looked forward to “taking the academic challenge and overdosing on science.” Her thesis aimed to investigate the effect of Vitamin E on the migration of leukocytes within the lung. Christine enjoyed exploring unchartered territory through novel research, but she also started to investigate post-doctorate options beyond the traditional academic track; while she loved benchwork and teaching, these parts of the job were often minimized by the grants-driven reality of the profession. After graduate school, Christine did a postdoc at the University of Chicago’s Office of Biosafety before joining the Career Advancement team as an Assistant Director for Graduate Services (https://careeradvancement.uchicago.edu/). Specifically in her current position, Christine works with students and postdocs from the Biological and Physical Sciences Divisions, helping them make informative choices on their career paths through various seminars, CV/application review, and one-on-one sessions. The focus is equally split for the academic track and the nonacademic track. The mission she says is to “help you do what you want to do.”

November SOTM: Catching up with Chinonye (Chi-Chi) Nnakwe

Article by Eun Ji Chung, Ph.D.

LANS 2011 -35- (8895)In March, we introduced Dr. Chinonye (Chi-Chi) Nnakwe who is the Director of Graduate Diversity Recruitment at the University of Chicago (https://www.awis-chicago.org/community/march-2012-scientist-of-the-month-chinonye-chi-chi-nnakwe). We wanted to follow-up with her and this newly-created position that aims to increase the population of traditionally underrepresented groups in the graduate population.

After we do quick introductions, Chi-Chi is on the white board and gets right to the point. She explains that name recognition of the University of Chicago among academic circles of underrepresented minorities needs to be improved. Often times, only students that have undergraduate faculty mentors and advisors are presented with the U of C as a top choice and are provided the encouragement to apply. In addition, while careers such as doctors and lawyers are prevalent enough where there is a general understanding of their roles and contributions to society, explaining what someone does with a Ph.D. degree is not as obvious. Therefore, Chi-Chi’s main objectives are to make the Ph.D. degree tangible to students as early as high school and to increase name recognition, recruitment, and retention.

Chi-Chi lists out 5 initiatives that she has been implemented to achieve these goals:

  1. UC Weekend (March): This event was started in 2012 and includes the entire campus with activities such as Scientific Diversity Symposium, alumni/career panels, and faculty presentations in order to welcome prospective minority students. MarkWhite Board your calendars:  This year’s event is April 4-6, 2013.
  2. School Visits (year round): Chi-Chi’s travel schedule includes college and high school visits as well as conferences to attract students to the U of C. Chi-Chi also follows-up with students that want to experience it for themselves through the campus visitation program, continuing the conversation and relationship started through her initial visit. In addition to campus tours, prospective students are introduced to graduate students from their relative departments.
  3. Student Advisory Board: This is a new initiative that includes a board of current students who will partner with Chi-Chi to speak to issues of recruitment and retention.
  4. Pipeline Programs:  Chi-Chi collaborates with the directors of pipeline programs to provide students with a more intimate experience than campus visitations through internships that may serve as a pipeline to attract prospective students to UChicago.  Social media avenues such as Facebook and Linkedin have been implemented to continue to foster these relationships.
  5. Evaluations: Chi-Chi takes part in evaluating various past programs, like UC Weekend, to gain strategic insight for grants development and future recruitment initiatives.

While Chi-Chi’s research experience as a graduate student and her time as a consultant provided great technical and managerial experience, Chi-Chi recognizes her interaction with students and the ability to mentor in her role as the Director of Graduate Recruitment Diversity to be incredibly rewarding. She also recognizes the great enthusiasm and the support from faculty, administrators and students from all parts of campus.

November SOTM: Matthew Grayson

Article by Agnella Izzo Matic

“It’s naïve to think science could be a neutral topic.”  That is the headline promoting ETOPiA’s most recent theater production, “The How and The Why,” which examines conflicting theories about female evolutionary biology from the perspectives of a female professor and a female graduate student.  Dr. Matthew Grayson founded ETOPiA (Engineering Transdiciplinary Outreach Project in the Arts) at Northwestern University in 2008 and has produced, and sometimes starred in, the autumn productions.  For Grayson, the ETOPiA plays serve to start a conversation about the purpose and relevance of science in our lives.  Previous plays have delved into the life of Marie Curie, human cloning, and the atomic bomb during WW II.

When he is not on stage, Dr. Matthew Grayson can be found in his role as Associate Professor of Electrical Engineering and Computer Science at Northwestern University.  After receiving his PhD from

Dr. Matthew Grayson with PhD candidate Chuanle Zhou, who is in her final year of studies.  Photo courtesy of Dr. Agnella Izzo Matic.

Princeton University, he followed with a post-doctoral fellowship at the Technical University of Munich.  Dr. Grayson has been awarded a CAREER fellowship from the NSF and is also a Humboldt fellow.

Currently, his research group studies the electronic properties of materials and engineers them to have a novel function.  One major area that they focus on is thermoelectrics, where waste heat can be converted into electricity or, alternatively, electricity can generate a temperature differential (refrigerate or heat).  For instance, rub your hands together.  Grayson plans to turn that small amount of heat generated in your hands into a kilovolt (that’s 1,000 Volts) of electricity using his thermoelectrical materials.  Among other things, this might be useful to generate low-intensity X-rays, which need very large voltages to accelerate the electrons but don’t require a lot of current.

To see this research in action is to better understand it.  The semiconductor-based electronics being tested are so fine that they need to be viewed under a microscope for the proper connections to be soldered.  For testing, these electronics are placed in a super-cooled magnet, which has been mounted in the floor of one lab and extends downward into Grayson’s second laboratory one floor below.  From the top, the magnet appears like a Medusa of wires, hoses, and connections protruding in all directions.

It is not often that you encounter individuals who combine such unique interests: theater and electrical engineering.  Dr. Grayson credits his involvement in theater with a positive influence on his teaching, both in the classroom and in seminars.  He has received two teaching awards while at Northwestern University and warm reception for his conference lectures.  Students are at ease talking with him during office hours and he keeps an encouraging eye out for talented young minds.

To him, one of the most important roles he fills as a mentor is making sure that people, especially female students, are aware of opportunities that they might have otherwise missed.  For instance, Grayson and his lab members invite middle and high school girls from the Chicago area into their lab every spring as part of the Society of Women Engineer’s Career Day for Girls.  His first two PhD students were women and he has mentored 3 other female undergraduate students in the last 2 years.  In addition, he perceives the ETOPiA plays as an unconventional experience that can ignite an interest in science for a younger generation that comes from multiple perspectives, ethnicities, and genders.

As with most other academic researchers, Dr. Grayson sees challenges ahead in publishing the next manuscript, getting the next grant, and graduating the next student.  However, he views these as part of the reason he chose this profession, because he enjoys taking on those challenges.   Grayson says, “In the end, you have to know your field and you have to know yourself.  When you think something is interesting, you have to be confident enough that, when no one else even understands why you’re doing that, you “That’s ok, I’m sure it will become clear eventually”.”

***************

Dr. Grayson was nominated for the 2012 AWIS-Chicago Motivator Award by Ms. Sunanda Prabhu-Gaunkar, a PhD candidate in Grayson’s laboratory.